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Abstract: 

Driving speed is an important risk factor, especially when negotiating horizontal curves. Therefore it may be useful in 

extracting surrogate measures to proactively safety assessment, a practice consistent with a current shift towards a Safe 

System approach to addressing road trauma. Review of previous literature indicated two categories of studies: (1) studies 
focusing on a safe driving perspective, i.e. studies primarily interested in finding the cut-off point in FCD data 

characteristics between safe and unsafe driving; (2) studies focusing on relating meaningful risk rates (percentages of 

exceeding the risk thresholds) to specific locations, and thus identify safety critical sites. However, no study was found that 

specifically focused on the relationship between kinematic characteristics (other than just speed) and road curves. 

The presented study focused on exploring the relationship between acceleration and jerk thresholds and crashes occurring 

on road curves. The first objective was to determine meaningful acceleration and jerk thresholds to utilize in explaining 
safety performance when negotiating curves. For this purpose floating car data (FCD) from a fleet of company vehicles, 

driving in rural sections of national roads in the Czech Republic, was collected and used to derive and validate potential 
surrogate safety measures. FCD presents in-vehicle information with several benefits compared to traditional techniques, 

such as feasibility of data collection, relatively unlimited spatial coverage, and availability of historical data. 

In the analysis, lateral acceleration and longitudinal jerk were found to be the most influential measures of curve safety 
performance. To sum up, the exploratory study outlined a practical approach to proactive evaluation of road curve safety: 

FCD data can generate useful surrogate measures of curve safety (acceleration and jerks) associated with crash history. 

A larger study is required to strengthen robustness of the results and provide confidence necessary for practical 
application. Potential use cases may include conducting interim evaluations of curve road safety treatments, or in-vehicle 

monitoring devices for detection of potentially unsafe manoeuvers and providing real-time feedback to drivers based on a 

combination of identified safety thresholds. 
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1. Introduction 

Horizontal road alignment is one of the general de-

sign features which have a significant impact on 

driving and safety. Horizontal alignment consists of 

tangents (straight sections) connected by horizontal 

curves. Curves are places of special interest for their 

higher crash risk compared to straight alignment due 

to additional centripetal forces exerted on a vehicle, 

higher driver cognitive workload, and other factors 

(Hummer et al., 2010; Georgieva and Kunchev, 

2015; Gaca and Pogodzińska, 2017). Internation-

ally, 25 to 30% of all fatal crashes occur on curves 

(PIARC, 2003; Golembiewski and Chandler, 2011; 

Jurewicz et al., 2015). This amount is even higher in 

the Czech Republic, where more than one third of 

total road fatalities occur on curves; particularly crit-

ical are curves in rural sections of national roads 

(Ambros and Valentová, 2016). 

Traditionally, road safety management has been re-

active, i.e. based on retrospective analysis of Police-

reported crash data (Nowakowska, 2012). But re-

cently, in line with a shift towards the Safe System 

approach to reducing road trauma, as well as auto-

mated driving, there has also been increased focus 

on developing and using surrogate (proactive) safety 

measures, which are causally and statistically related 

to crashes and injuries (Tarko et al., 2009). Speed, 

known as a critical safety factor (OECD/ITF, 2018), 

is one such measure. 

An emerging alternative is using speeds derived 

from in-vehicle collected floating car data (FCD 

data, also known as probe vehicle data; Bessler and 

Paulin, 2013). Compared to traditional speed meas-

urement techniques (radars, loops, etc.), the benefits 

of FCD data include improved feasibility of data col-

lection, relatively unlimited spatial coverage, and 

availability of historical data (Jurewicz et al., 2017, 

2018). Of additional interest are various measures of 

deceleration (including rate of change of accelera-

tion or deceleration per unit of time, known as jerk), 

which have been found to be associated with hazard-

ous situations, i.e. increased crash or near-crash fre-

quency (Dingus et al., 1997; Kiefer et al., 2006; 

Markkula et al., 2016; Feng et al., 2017). 

In this study, we explored the possibilities of proac-

tively assessing the safety of a sample of rural road 

curves using FCD data. We aimed to answer two re-

search questions: 

1) What are the cut-off values of FCD-based kine-

matic characteristics for assessing hazardous sit-

uations due to horizontal alignment (referred to 

in this paper as risk cut-off studies)? 

2) Can the proportion of these hazardous situations 

help to explain the safety performance of curves 

on rural roads (referred to in this paper as risk 

rate studies)? 

The following section presents a literature review 

summary, focusing on both research questions. Sec-

tion 3 describes the study methods, results, discus-

sion and conclusions. 

 

2. Literature review 

Following review summary is divided into two sub-

sections: 

− The first lists some examples of studies focusing 

on a safe driving perspective, i.e. studies primar-

ily interested in finding the cut-off point in FCD 

data characteristics between safe and unsafe 

driving. 

− The second lists some studies, which focus on 

relating meaningful risk rates (percentages of 

exceeding the risk thresholds) to specific loca-

tions, and thus identify safety critical sites. 

 

2.1. “Risk cut-off” studies  

The research, related to driver behavior, and its risk 

and safety consequences, has spanned several dec-

ades. For example, studying traffic conflicts (near-

crashes) started in the late 1960s (for reviews, see 

Zheng et al., 2014; Johnsson et al., 2018). But still 

there is no simple answer to the question “What is 

unsafe driving at an individual level?” (Martens and 

Brouwer, 2011). Nevertheless, there is evidence 

some safety critical event algorithms related to 

speed and acceleration are predictive of crash in-

volvement risk (Sagberg et al., 2015). Particularly 

interesting to vehicle speed when negotiating curves 

is lateral acceleration: it has been identified as the 

primary criterion for the choice of speed in curves 

(Ritchie et al., 1968), related to higher speeding 

(Reymond et al., 2001) and higher crash rates (Oth-

man et al., 2012). Also of interest to the present 

study are jerks, which were found to perform better 

than acceleration alone in identifying critical situa-

tions (Bagdadi and Várhelyi, 2013; Reinau et al., 

2016). 
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In this context, FCD data, linked to specific drivers, 

present a valuable source for assessing driving per-

formance and driving styles, as well as driving ex-

posure. A common approach is to analyze kinematic 

vehicle data to detect safety-critical events. For ex-

ample, so called rapid deceleration events (RDEs) 

have been successfully used as a surrogate safety 

metric in studies of older driver safety (Keay et al., 

2013; Chevalier et al., 2016, 2017). However, cut-

off (threshold) values of these “event triggers” vary 

significantly in the literature, for example: 

− longitudinal deceleration ranges from approx. 

0.1 to 0.75 g (Aichinger et al., 2016; Kamla et 

al., 2019) 

− critical jerks vary between 0.06 and 2 g/s 

(Naude et al., 2017; Pande et al., 2017) 

 

2.2. “Risk rate” studies 

Based on cut-off (threshold) values, it is possible to 

calculate proportions of events, when the threshold 

was exceeded (i.e. risk rate). The following selection 

of recent studies illustrates the examples of ap-

proaches to subsequent validation: 

− Mousavi et al. (2015) conducted sensitivity anal-

ysis of 21 different jerk value thresholds; then 

they compared location jerk rates (percentages) 

to crash rates. 

− Similarly, Pande et al. (2017) assessed the rela-

tionship of 10 jerk threshold values (varying 

from 0.50 to 2.75 ft/s3, with increments of 0.25) 

to the crash frequency at the location. 

− Reinau et al. (2016) used both speeds and jerks 

to identify critical locations in a Danish city, 

which were then visually compared with crash 

locations. 

− In a Czech study, speed consistency (i.e. differ-

ences between speeds in tangents and following 

curves) was used to identify substandard curves, 

and found curves classified as substandard were 

statistically related to locations with higher 

long-term crash frequencies (Ambros et al., 

2017). 

− Stipancic et al. (2018) conducted network 

screening in Quebec City, using cut-off acceler-

ation values of ± 2, 3 and 4 m/s2. The lowest 

value was found to have the greatest relationship 

with locations with higher crash frequencies. 

 

 

 

2.3. Summary 

In spite of the number of reviewed studies related to 

kinematic characteristics and safety, no study was 

found that specifically focused on the relationship 

between kinematic characteristics (other than just 

speed) and road curves. Based on a literature review, 

we decided to base this study on examining the rela-

tionship between acceleration and jerk thresholds 

and crashes occurring on road curves. The first ob-

jective was to determine meaningful acceleration 

and jerk thresholds to utilize in explaining safety 

performance when negotiating curves. 

 

3. Data 

Floating car data was collected from a fleet of com-

pany vehicles (for details see Ambros et al., 2017). 

Coverage was limited to rural sections of national 

(1st class) roads in the Czech Republic, which are 

mostly two-lane undivided roads (Figure 1). 

 

  
 

 
Fig. 1. Example photographs of two curves in the 

studied sample (https://mapy.cz/) 

 

https://mapy.cz/
https://mapy.cz/
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A previous Czech study (Ambros et al., 2017) uti-

lized FCD data collected at 4 Hz to obtain speed es-

timates and assess the consistency of driver speeds 

across approximately 100 circular curves (without 

consideration of transition curves). For the present 

study, we selected 30 of these curves. Since 4 Hz is 

not sufficient for derivations (acceleration → jerk), 

additional FCD data was collected at a frequency of 

32 Hz. On average, 20 drives through each curve 

were retrieved. After dividing data into driving di-

rections and excluding some with low number of 

records, 53 curve-directions (from 29 curves) were 

available. 

The data included time, GPS position, GPS derived 

speed, acceleration on the X and Y axes (𝑎𝑥 , 𝑎𝑦). 

Based on data formats provided by the FCD sensors, 

acceleration may be interpreted as (see Figure 2): 

− longitudinal (forward) acceleration represents 

either accelerating (+𝑎𝑥) or decelerating (−𝑎𝑥) 

− lateral acceleration represents either left turns 

(+𝑎𝑦) or right turns (−𝑎𝑦) 

Using acceleration differences (𝑑𝑎) and time differ-

ences (𝑑𝑡 = 1/32 s), we calculated jerks as follows: 

− longitudinal jerk (𝑗𝑥) = 𝑑𝑎𝑥 𝑑𝑡⁄  

− lateral jerk (𝑗𝑦) = 𝑑𝑎𝑦 𝑑𝑡⁄  

Figure 3 illustrates the patterns, provided by speed, 

acceleration and jerk profile of one sampled drive. 

The profile includes one potentially hazardous 

event, indicated by a red rectangle: while it may not 

be detected from the speed profile, it is visible from 

the acceleration profile, and even better from the 

jerk profile. 

To relate the mentioned kinematic characteristics to 

safety, we assigned the following parameters to the 

curve-directions: 

− 6-year frequency of single-vehicle (both casu-

alty and property-damage-only) crashes (𝑁) 

− annual average daily traffic volume (𝐼) 
− curve length (𝐿) 

− curve horizontal radius (𝑅) 

Descriptive characteristics of the mentioned varia-

bles are provided in Table 1. 

 

 
 

Fig. 2. Definition of axes of longitudinal and lateral 

acceleration (𝑎𝑥 and 𝑎𝑦) (car icon by Jule 

Steffen & Matthias Schmidt from the Noun 

Project, https://thenounproject.com/) 

 

 
Fig. 3. Example of speed, acceleration and jerk profiles, including a hazardous event (in red rectangle) 

 

https://thenounproject.com/
https://thenounproject.com/
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Table 1. Descriptive characteristics of collected 

variables 

 Variable Min. Max. Mean 

Std. 

Dev. 

Crash frequency 0 5 1.04 1.37 

Traffic volume [veh/day] 716 6245 3246 1385 

Length [m] 53 473 216 122 

Radius [m] 53 1034 319 199 

Longitudinal acceleration 
[g] 

–0.40 0.39 0.006 0.060 

Lateral acceleration [g] –0.56 0.49 0.002 0.137 

Longitudinal jerk [g/s] –1.14 1.31 0.002 0.070 

Lateral jerk [g/s] –1.10 1.19 0.000 0.097 

 
In accordance with the previously reviewed studies, 

we prepared several indicators: 

− acceleration: longitudinal (𝑎𝑥), lateral (𝑎𝑦), ab-

solute value (√𝑎𝑥
2 + 𝑎𝑦

2) 

− jerk: longitudinal (𝑗𝑥), lateral (𝑗𝑦), absolute 

value (√𝑗𝑥
2 + 𝑗𝑦

2) 

− plus absolute values of 𝑎𝑥, 𝑎𝑦, 𝑗𝑥, 𝑗𝑦 

We used the minimum, maximum and 85th percen-

tiles (from all collected data) of these indicators. 

This way, in total 30 variables were created. 

 

4. Analyses and results 

4.1. Risk cut-off analysis 

To determine the cut-off value, we expressed safety 

in terms of annual crash rate per 1 million vehicle-

kilometres. Then we used pivot tables to find cate-

gories, which would indicate a cut-off value. 

Reasonable trends were found for 85th percentiles of 

absolute values of 𝑎𝑦 and 𝑗𝑥 (see graphs in Figure 

4). Thus, the identified cut-off values were 𝑎𝑦 = 0.3 

g and 𝑗𝑥 = 0.1 g/s. These values are within the range 

listed in the literature review. 

 

4.2. Risk rate analysis 

Risk rate was defined as a percentage of exceeding 

the risk thresholds. We calculated risk rates (propor-

tion of a number of records, when 𝑎𝑦 and 𝑗𝑥 exceed-

ing the identified cut-off values to total number of 

records) and labelled them as 𝑎𝑦-rate and 𝑗𝑥-rate. 

For example, exceeding the 𝑎𝑦-threshold in 50 cases 

of 1000 yields 𝑎𝑦-rate = 50/1000 = 0.05 (5%). 

 

 
Fig. 4. Cut-off values, identified as the highest cat-

egories in graphs of average crash rates 

 

To determine how much the rates contributed to 

safety performance (crash frequency), we developed 

two models (also known as safety performance func-

tions): 

− “Traditional model” with traffic volume, curve 

length and radius as explanatory variables. 

− “Combined model” with all 30 developed kine-

matic parameters as additional explanatory var-

iables. 

We used generalized linear modelling, with a nega-

tive binomial error structure and log link function, 

i.e. with exposure variables (traffic volume and 

curve length) in a form of natural logarithms (for 

more information, see e.g. Ambros et al., 2018): 

 

ln(𝑁) = 𝛽0 + 𝛽1 ∙ ln(𝐼) + 𝛽2 ∙ ln(𝐿) + 𝛽3 ∙ 𝑅 + 𝛽4
∙ 𝑎𝑦𝑟𝑎𝑡𝑒 + 𝛽5 ∙ 𝑗𝑥𝑟𝑎𝑡𝑒 

 

𝑁 = exp(𝛽0) ∙ 𝐼
𝛽1 ∙ 𝐿𝛽2 ∙ exp(𝛽3 ∙ 𝑅 + 𝛽4 ∙ 𝑎𝑦𝑟𝑎𝑡𝑒

+ 𝛽5 ∙ 𝑗𝑥𝑟𝑎𝑡𝑒) 
 

where 𝛽𝑖  are regression parameters, estimated by 

generalized linear modelling in IBM SPSS. 
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In the first step (developing a traditional model), 

curve radius was not found to be statistically signif-

icant. Both exposure variables (traffic volume and 

curve length) were significant at approx. 80% confi-

dence level (i.e., 𝑝 < 0.2). 

Since 𝑎𝑦- and 𝑗𝑥-rates may be related to traffic vol-

ume (𝐼), we checked their correlation. Pearson’s cor-

relation coefficients were between 0.2 and 0.3, 

which indicates “little if any correlation” (Hinkle et 

al., 2003). Therefore, in the second step (developing 

a combined model), both exposure (𝐼 and 𝐿) and 

rates could be used as independent explanatory var-

iables. Given the small sample size and exploratory 

character of the study, we decided to accept even 

lower significance than commonly used 95% levels. 

Parameters of both models are reported in Table 2. 

Achieved significance levels included values up to 

0.3 (i.e. 70% confidence, as experienced also in 

other studies, e.g., Turner et al., 2012). Table 2 also 

lists the goodness-of-fit measures: overdispersion 

parameter and proportion of explained systematic 

variation (also known as Elvik’s index; Fridstrøm et 

al., 1995). 

All regression coefficients have positive values; i.e., 

the variables are positively associated with crash fre-

quency. In terms of goodness-of-fit, the combined 

model seems to outperform the traditional one. This 

is indicated by the decreased overdispersion param-

eter value, and increased proportion of explained 

systematic variation. 

 

5. Discussion and conclusions 

Our objective was to explore the possibility of de-

riving and validating a FCD-based indicator to be 

used as a surrogate measure of horizontal curve 

safety. Firstly, using crash rate and pivot tables, we 

identified critical thresholds of lateral acceleration 

(𝑎𝑦 = 0.3 g) and longitudinal jerk (𝑗𝑥 = 0.1 g/s). 

Secondly, we calculated the proportion of sampled 

vehicle trips exceeding these cut-off values in each 

curve-direction, and used it as an explanatory varia-

ble. Compared to traditional model, it helped im-

proving the goodness-of-fit. 

However, we are aware of several following limita-

tions: 

− The studied sample was very small. Also num-

ber of drives through each curve was relatively 

low. This limited possibility of more detailed 

analyses, for example distinguishing among in-

dividual vehicles, curve types, etc. 

− The fact that FCD data was collected from com-

pany vehicles may have influenced the obtained 

information. 

− For model development, only the traditional ex-

planatory variables were used (traffic volume, 

length, radius). Future analyses could exploit 

also other parameters, such as skid resistance, 

superelevation or vertical alignment characteris-

tics. 

− In the developed models, most variables had a 

lower level of achieved statistical significance, 

probably due to limited sample size. Neverthe-

less, the signs of regression coefficients indi-

cated the expected positive associations. 

− The two applied goodness-of-fit measures indi-

cated that adding the kinematic parameters as 

explanatory variables helped improve the model 

quality. However, it is difficult to find a compa-

rable reference to judge the absolute importance 

of the reported goodness-of-fit changes. In addi-

tion, similar studies, where surrogate safety 

measures were incorporated into models, used 

different goodness-of-fit measures (Saleem et 

al., 2014; So et al., 2016; He et al., 2018). 

 

Table 2. Parameters of the developed safety performance functions 

Traditional model  Combined model 

Variable 𝜷𝒊 SE Sig.  Variable 𝜷𝒊 SE Sig. 

𝛽0 –5.222 3.105 0.093  𝛽0 –9.286 4.737 0.050 

Ln (volume) 0.414 0.320 0.195  Ln (volume) 0.585 0.443 0.187 

Ln (length) 0.370 0.245 0.132  Ln (length) 0.837 0.420 0.046 

       𝑎𝑦-rate 1.746 1.703 0.305 

     𝑗𝑥-rate 4.871 3.742 0.193 

Overdispersion 0.237    Overdispersion 0.117   

Syst. var. expl. 70%    Syst. var. expl. 79%   

Note: 𝛽0 – regression constant (intercept); 𝛽𝑖 – regression coefficients; SE – standard error; Sig. – achieved level of sta-

tistical significance. 
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Nevertheless, the exploratory study enabled answer-

ing two initial research questions: 

1) What is the cut-off value of FCD-based kine-

matic characteristics for assessing hazardous 

curves? The first analysis (section 4.1) identified 

cut-off of lateral acceleration (𝑎𝑦 = 0.3 g) and 

longitudinal jerk (𝑗𝑥 = 0.1 g/s). 

2) Can the proportion of these hazardous events 

help in explaining the safety performance? In 

the second analysis, risk rates (i.e., percentages 

of vehicles exceeding the risk thresholds when 

negotiating the curves) were used as additional 

explanatory variables, which helped improving 

quality of the combined safety performance 

function. 

To sum up, this study outlined a practical approach 

to proactive evaluation of road curve safety using 

FCD data. Lateral acceleration and longitudinal jerk 

were found to be the most influential measures of 

curve safety performance. A practical application of 

the developed method would be proactive safety as-

sessment of rural curves based on available FCD 

data. Another potential application would be in con-

ducting interim evaluations of curve road safety 

treatments (e.g. signs, delineation, etc.). Accelera-

tion and jerks can be measured before and after treat-

ment is implemented, and/or compared with control 

sites, and an estimated crash reduction factor can be 

estimated. This would enable monitoring and early 

intervention for treatments appearing to fail to de-

liver safety benefits. Other applications may include 

in-vehicle monitoring devices for detection of poten-

tially unsafe manoeuvers and providing real-time 

feedback to drivers based on a combination of iden-

tified safety thresholds. 

This exploratory study found that FCD data can gen-

erate useful surrogate measures of curve safety (ac-

celeration and jerks) associated with crash history on 

rural curves. It is recommended to validate the ap-

proach by testing on larger samples (in more curves, 

from a broader vehicle fleet, in a longer time 

frame…). The results may help fill the gap in evi-

dence-based studies on proactively evaluating road 

curve safety. 
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