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ABSTRACT 

Traffic speed is one of the most important factors influencing road-based mobility and safety 
outcomes. Collection of accurate speeds at chosen points in the road network has been costly 
and limited in scope. Increasing proliferation of connected vehicles generates new types of data 
sampled from mobile and navigation devices, and from onboard systems. Internationally, this 
anonymous sampling technique is referred to as floating-car data (FCD). FCD offers a unique 
opportunity to measure speeds at any point across the entire road network. The validity of this 
data and its usefulness in road safety applications has been unknown.  

This paper presents findings of validation of FCD speeds against conventionally collected point-
speed data for different parts of the road network in Victoria. Analysis showed a clear 
relationship between the two data types. FCD was shown to be a viable source of speed 
monitoring information which can influence road safety policy, speed management (e.g. setting 
of speed limits), and in road safety evaluations. Availability of FCD speeds was much greater 
than for point-speed data, covering most of the public road network. Several use cases for this 
data are presented to demonstrate its practical applications. The paper discusses various 
limitations of the data, and the expected evolution of this important data source.  

INTRODUCTION 

Traffic speeds are one of the most significant factors in road safety performance, one which has 
been relatively well understood through research over the past twenty years. Changes in 
speeds are a proxy indicator of success of some road safety policies and projects, e.g. speed 
enforcement, or traffic calming. If percentages of vehicles speeding by more than 10 km/h, 20 
km/h, and 30 km/h are reduced, then such policies/projects are contributing to overall safety 
improvement. Changes in personal crash risk can be estimated using relationships developed 
by Kloeden et al. (2001, 2002). 

Typically, road safety practitioners are interested in mean speed changes, and these can be 
used to estimate likely safety impacts using Elvik’s Power Model (e.g. Nilsson 2004, Elvik 2009, 
2013). Operating speeds (85th percentile) are also sought as they are an important operational 
and road design factor. 

Transport Accident Commission (TAC) sponsored an ARRB study to better understand 
conventional and emerging ‘big data’ sources of speed information, their strengths and 
weaknesses in the context of system-wide speed monitoring and evaluation for road safety 
purposes. The study objectives were to explore the relationship between conventional point-
speeds and floating car data (FCD) speeds sampled from connected vehicles. This involved 
exploring respective road network coverage of both speed data sources, their latency and 
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availability, and potential use-cases for road safety. The study concluded with preliminary 
recommendations regarding use of FCD speeds in road safety monitoring and evaluations. 

POINT VS. FLOATING CAR DATA SPEEDS 

Conventionally, speeds of all vehicles are collected at a point location on the road for a defined 
period (e.g. two weeks). The methods of measurement vary and include pneumatic tube 
counters, electromagnetic or piezo-magnetic loops, or TIRTL laser technology. Radar is another 
form of data collection typically using small samples of vehicles over a short time.  

The common aspect of conventional techniques is the assumption that the point measurement 
is applicable to the whole road section of interest (TRB, 2011). This approach means that traffic 
speed data is available in a limited number of locations on the road network, rather than as a 
continuous map of speeds. Also, if speed information is needed at a specific location, it usually 
is measured at a considerable expense and delay.  

The second feature of point-speed data is that it is collected under established guidelines 
avoiding geometric and operational constraints (i.e. on flat straights and away from 
intersections). The industry standard seeks this information to be presented as free flow speeds, 
i.e. with headways between vehicles greater than 4 seconds (Austroads 2017). This approach 
seeks to strip off the effects of congestion, road geometry, and of other road users’ presence on 
drivers’ choice of speed.   

In recent years, vehicle navigation devices began offering a sizeable sample of accurate global 
positioning data across the entire road network. This ‘big data’ source is called floating car data 
(FCD), or probe vehicle data. FCD has been used internationally in road transport management, 
especially in monitoring of network performance and congestion, and in evaluation of traffic flow 
improvement projects (Rose 2006, Leduc 2008, Bessler and Paulin 2013, Espada and Bennett 
2015). 

FCD comes from a variety of connected vehicle sources such as in-built navigation services, 
taxi instrumentation, commercial vehicle logistics and tracking devices, and from mobile phone 
applications. Data is always provided with users’ consent and is stripped of any identifying 
information. Data comes from multiple sources and is aggregated into a uniform format by 
commercial providers such as HERE, TomTom or Intelematcs. 

In most cases, speeds are calculated from distance covered along a route between time-
stamped satellite GPS ‘pings’ (10-60 sec apart). In other cases, vehicles provide speed at the 
instant of the satellite ‘ping’. Thus, FCD speeds are averaged over road segments defined by 
navigation service providers’ maps (30m – 2000 m, typically ~200 m).  

Unlike point-speeds, there is no direct way to screen headways, as the data is sampled (2-10% 
of all traffic) based on connected vehicles’ proprietary navigation technology.  

Theoretically, mean point speed (time-mean speeds, or arithmetic mean speed) tends to be 
greater than the mean link speeds from FCD (space mean speed, or harmonic mean speed) 
(Austroads 2017). This gap is greater when standard variation of point speeds is higher. There 
is also an observed tendency for the gap to increase with the length of the link. Overseas 
studies have shown promising correlations of FCD speeds with point-speeds (Bekhor et al. 
2013, Aarts et al., 2015, Reinau et al. 2016, Ambros et al. 2017).  

STUDY METHODS 

The study reviewed the speed data sources currently used in Victoria from the perspective of 
the following strategic goals set by TAC:  

1. Monitor trends in speeds across the network to assist in managing the State Road 
Safety Strategy. 

2. Provide input into speed management programs such as speed limit setting. 
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3. Evaluate the effectiveness of broad programs and local deployments of speed 
management programs and speed enforcement. 

Point-speed samples were obtained courtesy of VicRoads’ Traffic Information System for 
several different source types. The sources were assessed across several criteria driven by the 
above strategic objectives, such as spatial and temporal availability, availability of speed KPIs 
(e.g. mean speeds, 85th percentiles, etc.), and frequency of data collection. The authors then 
sampled FCD speeds from two commercial providers and subjected the data to the same 
assessment for comparison. 

In the second stage of analysis, authors sought FCD data from HERE, TomTom and 
Intelematics, the three providers who expressed interest in project collaboration. VicRoads 
conventional point-speed data was sampled from the first stage. HERE and TomTom provided 
corresponding FCD speed samples for the same locations and for similar time periods. 

Data was sampled from urban freeways and arterials, and from a rural road. The mean and 85th 
percentile speeds, and statistical distributions were compared between the two speed data sets, 
drawing preliminary validation conclusions and qualifications about the FCD speeds.  

Preliminary use-cases were then explored to better understand the FCD speeds in their different 
applications to safety.  

FINDINGS 

Conventional point-speeds data sources 

Samples of VicRoads speed data sources were analysed, and the key custodians were 
interviewed to obtain information pertaining to aspects which could not be directly measured. 
The following assessment of the data sources for speed was made. The assessment criteria 
were agreed to by TAC and VicRoads based on informing the needs of a future speed 
distribution management system. Table 1 presents the results. 

Table 1. Assessment of conventional point-speeds sources 

Point-speed 
data source 
type 

Availability 
everywhere 
across public 
network 

Frequent 
updates  

Long 
historical 
data 
available 

All leading 
KPIs 
possible 

Short 
time 
periods  

Comments 

Tube data 
(Metrocount) 

    1 Specific locations on 
rural arterials. 
Annual updates, or 
less often. 

Telemetry 
sites 
(pavement 
loops)  

   2  Specific locations on 
rural arterials. 

TIRTL     1 Several sites on 
urban freeways.  

Freeway data 
stations 
(pavement 
loops and 
studs) 

   2  Specific locations on 
urban freeways. 
Data of better 
standard than 
telemetry sites. 

Arterial data 
stations 
(pavement 
loops) 

   2  Specific sites on 
principal urban 
arterials. Updated 
annually.  

Radar gun      76 locations on 
urban arterials, 
sampled annually for 
a two-hour period. 

1. Yes, if set up at new locations for the required periods. Expensive to deliver and manage.  
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2. Available but unclear how biased the means and 85th percentiles are, as distributions are based on aggregated 
samples and/or and speed bins. These sources cannot measure vehicle headways and can only estimate free-flow 
speeds (e.g. speeds late at night).  

The assessment confirmed that none of the point-speed data source covered the entire road 
network. Rather, all sources provide data at selected points across the state-controlled road 
network (local government roads were not included in the VicRoads system).  

Also, it was found that each source had specific technical limitations related to data collection 
technology, data storage and aggregation, and calculation of speed KPIs. These limitations 
make these sources non-comparable. For instance, freeway data stations measure speeds in 
20 sec averages, continuously. Since individual vehicle speeds are not reported, this source 
cannot provide headway. Hence, only general speed profile was available regardless of 
headways and congestion. Free-flow speeds could only be inferred (e.g. in the middle of the 
night). In contrast, radar gun studies were conducted twice a year, for two hours, and were 
based on a sample of 100 surveyor-selected free-flowing vehicles with headways exceeding 4 
sec. Thus, speed KPIs obtained from such different sources and different parts of the road 
network cannot be directly compared.  

The findings suggest that there was no single ‘ground truth’ speed data source representing all 
parts of the road network. Rather, some of the point-speed data sources should be noted for 
their accuracy and versatility. TIRTL and tube count data are proven low-error techniques, 
measuring individual vehicles, and thus providing rich data sets for analysis and interpretation. 

Connected vehicle sources – FCD speeds 

The same assessment criteria were applied to three proprietary sources of FCD speeds. Some 
samples were obtained, and the data provider representatives were interviewed to obtain further 
information. The data characteristics were similar across all three providers, with small 
variations in technical presentation of the data and in the sampled vehicle fleet composition. 
Table 2 shows the results of the assessment. 

Table 2. FCD speeds, assessment vs. TAC data criteria 

Data 
source 

Availability 
everywhere 
across 
public 
network 

Frequent 
updates  

Long 
historical 
data 
available 

All 
leading 
KPIs 
possible

Short 
time 
periods

Comments 

FCD 
speeds 

   1  May not cover some 
very low volume 
roads (e.g. access 
lanes). Quality and 
availability of short-
period KPIs (e.g. 15 
min) will be better on 
high-volume roads. 
Long extraction time 
periods may be 
needed on low-
volume roads. 

1. No headways can be provided, and speed data is available as KPIs only, e.g. mean, std. dev, and a 5-percentile 
increments. Two of the three providers can also provide a sample size.  

It was evident that FCD can provide a consistent source of speed data across the entire state. 
Given that FCD speeds are measured over longer distances, they are expected to be different 
to point-speeds (time-mean, see Austroads 2017 for definitions). The main expected effect 
would be that the FCD speeds would have lower values as they are averaged over a known 
road length, rather than representing a speed under idealised location and driving conditions.  
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Most critically, no headway information is available, hence free-flow speeds cannot be directly 
measured. FCD speeds are not available in raw format, but the data is quality assured by the 
provider. Providers are bound by privacy laws, and then exceed these requirements by 
destroying parts of the information which could be used to identify individual vehicles/users, 
before the data is released for use. This may pose issues to some analysts, as data quality 
cannot be directly assessed as it can be with tube counter or TIRTL data2. Instead, data 
providers offer information about data filtering and cleaning methods (e.g. how stationary 
vehicles, personal navigation devices, or multiple devices per vehicle are stripped out of the 
data). 

Since FCD speeds are sampled from GPS-enabled vehicles and devices, there is an issue with 
biased representation of the vehicle fleet. Heavy and commercial fleet vehicles are over-
represented in the historical data sample, as these were the early adopters of the technology. 
Also, specific vehicle makes are over-represented depending on the specific data partnerships 
entered by the data providers. To check for representativeness, data providers enable simple 
data filtering options (e.g. compare FCD speed results with and without heavy vehicles). Also, 
each year, new data sources are added expanding the breadth of different classes of vehicles 
and drivers. 

FCD speeds are available from 2008 for much of the road network, with the last three years of 
data being of the best quality due to rapid increase in use of navigation services and vehicle 
connectivity. This means that the first strategic objective, i.e. high-level speed trend monitoring 
across the entire network, can be satisfied if the data is deemed to be acceptable by 
researchers and practitioners.  

FCD speeds are available for all types of road links, including sections with steep grades, 
curves and intersections, during congested and uncongested periods, and in road sections with 
traffic calming. Figure 1 shows a historical snapshot of FCD mean speeds for Wednesday 
daytime off-peak period across part of the Melbourne road network. Speeds on local streets 
have been turned off for display clarity. Such features of the data mean that the second strategic 
objective (speed management program inputs) may be met, subject to satisfactory assessment 
of the FCD speeds. These questions of validation are tackled in the next section.  

 

Figure 1. Snapshot of FCD mean speeds across the arterial network 

                                                      
2 Such options may also not apply to other conventional point‐speed data sources such as loops, studs 
and radar due to automated data aggregation to reduce storage.  
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Findings from data analysis and preliminary validation 

The study’s second and third strategic objectives sought to establish whether data could be 
used to inform speed management programs, and to evaluate their effectiveness. To answer 
this, preliminary validation of FCD speeds was undertaken against known conventional sources 
of point-speeds.  

The first test sought to establish if there was a general relationship between point-speeds and 
FCD speeds.  For this purpose, a publicly available set of VicRoads speeds was used and 
matched with FCD speeds. The VicRoads point-speeds were based predominately on inductive 
loops, measured at metropolitan freeway and arterial data stations (see Table 1 for the 
assessed characteristics of point-speed data),. The finest level of point-speed data available 
were hourly mean speeds sampled during 2012 (dates unknown, no headway information). 
These data stations were geographically matched with corresponding FCD links. FCD speeds 
were extracted from HERE Traffic Analytics system for the available three-year period (2012-
14), also presented as hourly means. Locations with insufficient FCD data sample size  were 
removed from further analysis3 to reduce error. Analysis was carried out on data from 235 
locations, with speed limits between 50 km/h and 100 km/h.  

Direct comparison of the hourly mean speeds provided little insight due to significant data 
scatter (24 hourly values x 235 locations, with differences in data periods). Figure 2 shows more 
aggregated level of analysis, comparing the average hourly mean speeds for each location 
using both data sources. Figure 2 shows that while there were location-based effects (different 
road types and operational categories), there was a strong overall relationship between 
averaged mean loop point-speeds and FCD speeds (R2=0.83). FCD speeds, being space-mean 
speeds were lower than time-mean point-speeds, as expected. The standard error was 9.7 
km/h, similar to that found previously by Espada and Bennett (2015). Also, Hrubeš & Blümelová 
(2015) found FCD speeds to be similar but lower than loop speeds. The relationship was also 
statistically significant. Also, the observation that link speed was greater than point speed was 
consistent with theoretical expectation of the relative differences between time mean and space 
mean speeds.  

 

                                                      
3 FCD data was improving continuously. Data quality issues present in 2012‐14 may not be an issue in 
2018.  
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Figure 2. Averaged hourly mean speeds for every location 

Further analysis was carried out, averaging hourly mean speeds across all similar locations, i.e. 
by speed limit. Results for different speed limits showed similar trends, and the results for 80 
km/h roads are shown in Figure 3. It is clear, that both speed data sources showed similar 
trends across the day in response to congestion, but FCD speeds were systematically lower. 
FCD mean hourly speeds were typically 11 km/h lower than loop mean hourly speeds (range 7 
– 15 km/h for this speed limit). Figure 3 also shows the standard deviation for each data source; 
both overlapped, suggesting that the 11 km/h difference was not statistically significant (using 
p≤0.05) in this case. 

 

Figure 3. Comparison of hourly mean speeds averaged across all 80 km/h locations 

Point-speeds from loop data stations were just one of the data sets currently used in strategic 
speed monitoring and management in Victoria. TIRTL technology developed in Australia has 
been used more frequently in recent years to provide very precise point measurements for 
traffic counting and classification, and for speed measurements (CEOS, 2017).  

The analysis was limited to two locations, inbound and outbound at the same Monash Freeway 
chainage, to better understand if FCD data can relate sudden changes in speeds as well as a 
trusted conventional source.  

All-traffic data was used in the analysis. Disaggregation of free-flow speeds was possible but 
difficult without access to proprietary TIRTL software. FCD data was extracted for links matching 
the two TIRTL locations. In this case both TIRTL and FCD speeds were extracted for the same 
April to June 2016 period. Given very high traffic flows on Monash Freeway, there were no data 
quality issues with either TIRTL or FCD speeds.  

Figure 4 shows the results of the comparison for the AM peak analysis for inbound traffic (a) and 
outbound traffic (b). Given better access to the point-speed data, analysis was possible for 
mean and 85th percentile speeds. Other speed percentiles were also compared. Figure 4 
shows the effects of peak flow: the inbound speeds (a) presented a range of speeds expected 
before, during and after the congested period. The outbound speeds (b) presented largely 
uncongested flow clustered close to the 100 km/h speed limit.  

In this analysis, Chi-square tests were carried out showing that the two speed distributions were 
statistically different, both for mean and 85th percentile speeds (also confirmed by KS and 
ANOVA tests). The regression analysis showed consistent relationships between point-speed 
and FCD speeds (see Figure 4). It was noted that the regressed relationship for mean speeds in 
Figure 4 a) was close to that found from the loop data in Figure 2. This only applied to inbound 
flow where a broad range of speeds was available. FCD speeds were consistently lower than 
point-speeds.  
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Figure 4. Comparison of hourly mean speeds by day of the week for the two locations 

USE-CASES OF FCD SPEEDS 

Availability of FCD speeds across the road network suggests many new uses for policy makers 
and practitioners. Figure 1 showed basic mean speed mapping functionality. The following 
figures demonstrate some of other use-cases developed during the study.  

Figure 5 shows the effect of reducing the speed limit in Bell St in the Melbourne suburb of 
Coburg, from 70 km/h to 60 km/h in early June 2015, to improve safety performance. FCD 
speeds were sampled for a midblock link between March and December 2015. Figure 5 shows 
mean and 85th percentile FCD speeds applicable between 10am and 2 pm, i.e. off-peak when 
speeds could be assumed to be free-flowing.  

Figure 5 shows the immediate effect of speed limit reduction on the 8 June, with a slight down-
trend until September. Discounting this transitional period, the mean and 85th percentile speed 
before/after changes were in the range expected from a short follow-up study, even if the 
absolute values may require calibration (e.g. the relationship from Figure 2). Mean speed 
change can be used in Elvik (2009) to estimate the expected crash reduction due to speed limit 
reduction. Lack of speed change would prompt additional action (e.g. enforcement, and/or traffic 
calming measures) 



28th ARRB International Conference – Next Generation Connectivity, Brisbane, Queensland 2018 
 

© ARRB Group Ltd and Authors 2018 9 

 

Figure 5. Bell St speed limit reduction, June 2015 

The critical new development was that collection of before and after tube count data would have 
required road agency resources, if done at all. Placement of counters at this busy location would 
result in traffic management costs and delays. FCD speeds offer an opportunity for easy 
retrospective access to speed data, and thus enable monitoring and evaluation of speed 
management (strategic objective three). 

Another use case involves observation of different types of speed time-trends for a rural 
location, something which could be used to inform speed limit enforcement programs along with 
other data (traffic volumes, crash history). An FCD link was selected for Midland Highway in 
Bonie Doon area, Victoria. Figure 6 shows hourly mean and 85th percentile speed plots for a 
period between 1 July 2016 and 23 March 2017. A clear trend was exhibited: speeds increased 
above the 100 km/h speed limit during the night, between 10 pm and 6 am. This is the time 
when majority of motorists may feel that the risk of police enforcement is at its lowest. Even 
without accurate calibration, the relative FCD speed data suggest that increased night-time 
enforcement would reduce risk of speeding-related crashes.  

 

Figure 6. Mean and 85th percentile hourly speeds for the Bonie Doon link 

There were many other proposed use-cases to be explored with FCD data. Some examples 
included:  

 Area-based detection of traffic speed changes in response to traffic calming. 

 Short-term evaluation of treatments, where speed change is a proxy measure of safety. 
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 Input into enforcement planning through identification of temporal speeding hot-spots, and 
road segments with high crash / severe injury risk due to speeding. 

 Inputs into network-wide safety performance modelling and planning of investment programs 
(e.g. ANRAM). 

These and other use-cases can be accommodated in a spatial analysis system for FCD speeds. 
Further ARRB investigations were exploring development of an online business analytics 
software for lean delivery of such a system. This approach would provide agility for data 
updates and system functionality evolving with the needs of its users.  

OTHER FINDINGS AND DISCUSSION  

The following observations about FCD were made from the preliminary validation: 

 FCD speeds can be retrospectively extracted for any defined road link on the road network. 

 Roads with high traffic volumes generate sufficient FCD data samples more quickly – shorter 
data extraction periods can be accommodated (e.g. one month).  

 Lower-volume roads generally require longer data extraction periods. 

 Obtaining speeds for short time periods (e.g. hourly) requires longer data extraction periods 
(weeks, months). Longer time periods (e.g. peak period, off-peak, 24h) would require shorter 
extraction periods. 

 Knowledge of ‘probe’ vehicle sample size is the best way to assure quality of the extracted 
data. Minimal sample size required for analysis varies with standard deviation. For relatively 
free-flowing traffic (std. dev < 5 km/h), a sample of 100 probes will produce speed KPIs 
accurate to 1 km/h. For more varied flows, or longer time periods, larger samples will be 
needed to provide same accuracy (around 700 vehicles for std. dev. of 13 km/h). Sample 
size and standard deviation are included in the data outputs provided by some of the FCD 
providers.  

 FCD is becoming more plentiful as navigation services and connected vehicles proliferate via 
IoT phenomenon (Internet of Things). Analysis of 2017 FCD speed data showed significant 
improvement in quantity and quality compared to 2014. 

 Pedestrian and cyclist movement or speed FCD data was some time away from realization. 
Data providers traditionally focused on road vehicle navigation and data services for other 
modes of transport remain a future priority. 

This paper proposed some preliminary calibration relationships between FCD and point-speeds, 
based on available data (e.g. Figure 2). Such calibration may be useful as traffic practitioners 
may seek to sense-check FCD speeds against the expected point-speed values collected using 
conventional methods. Current speed-safety models (e.g. Elvik 2009) rely on mean point-
speeds, so conversion of FCD speeds may be necessary.  

Calibration models should be developed using many locations across different road stereotypes. 
One possible solution would be multivariate models for mean or 85th percentile point-speeds 
considering input variables such as relevant FCD speeds, rural/urban environment, speed limit 
and road geometry. 

Error sources and structure of FCD require further investigation to better understand how 
precise FCD speeds data can be (e.g. temporal, fleet biases, sample size effects). This can be 
investigated through specific use cases to inform how well they support the three strategic 
objectives (i.e. set clear limitations of the current FCD). 

This paper considered all-traffic speeds. Many traffic and design practitioners prefer using free-
flowing speeds (headways greater than 4 sec), as they are intended to indicate driver response 
to speed limit and road geometry, rather than to presence of other road users.  

Views on this are evolving. Some propose that such free-flow conditions are rare for most of the 
travel undertaken on Australian roads. Consequently, these are not the traffic conditions under 
which majority of crashes and injuries occur. In this context, deeper understanding of speeds 
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may be needed under different operational conditions. Mobility practitioners embrace this 
concept in their studies of operational network efficiency and congestion.  

FCD speeds may be used to develop a new generation of speed-safety models to replace the 
Elvik (2009) Power Model. Some of the possibilities include intersection-specific models where 
approach speeds could be statistically related to crash outcomes. Also, specific relationships 
could be developed for pedestrian and cyclist safety outcomes given prevailing speeds. 
Temporal speed-safety models can be developed leading to better appreciation of the safety 
effects of congestion and speeding. Most importantly, use of FCD speeds would assist in 
proactive approach to road safety planning and Safe System implementation.  

CONCLUSIONS 

The study provided a significant leap in the understanding of FCD speeds and their application to 
road safety. FCD speeds provided by HERE were validated against samples of conventional 
point-speeds (loops, TIRTL) showing FCD speeds to be systematically lower. It was suggested 
that FCD speeds could be calibrated to estimate mean point-speeds, e.g. for use in Elvik’s Power 
Model.  

Use-cases in the paper showed that all three strategic safety objectives for network-wide speed 
monitoring, and for informing and evaluating speed management programs could be met using 
FCD. Many speed distribution indicators can be derived from FCD speeds, e.g. mean and 85th 
percentile speeds, standard deviation.  

Further work is needed to understand functional data limitations in specific use cases, and to 
develop new practices, e.g. FCD speeds calibration, sampling technique guidance, and new 
speed-safety performance models.     
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